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Abstract

This article proposes a dynamic stability index of a flexible manipulator. The method is illustrated by considering the 6-

UPS Stewart platform as an example. First, the analysis of dynamics and vibration of a 6-UPS Stewart platform is

presented. The dynamic formulation follows the Newton–Euler approach. Leg stiffness, force and torque due to viscous

friction at the joints, inertia and gravity effects are considered in the model. Finally, the response of the platform, subjected

to base excitations at different frequencies, has been studied and the dynamic stability index developed has been validated.

r 2007 Published by Elsevier Ltd.
1. Introduction

Stability of a manipulator is very important for its satisfactory performance. Basic study of singularities in
parallel manipulators was done by Gosselin and Angeles [1]. They classified the singularities in three types.
Later, Ma and Angeles [2] showed that a highly symmetric Stewart platform (e.g., Stewart platform with
regular hexagonal base and top platforms) is always singular. They called such situations as architecture

singularities. Gosselin [3] also studied singularity associated with high condition number of force
transformation matrix, which has an impact on flexible-leg Stewart platform in terms of stiffness mapping.
Bhattacharya et al. [4] and Dasgupta and Mruthyunjaya [5] proposed strategies for singularity-free path
planning. They used a high condition number of force transformation matrix as the representation of
proximity to singularity. In all these cases, singularity studies have taken into account the architecture and
configuration (i.e., kinematic parameters). The dynamic parameters (i.e., mass, inertia, stiffness, etc.) were not
taken into account.

Yoshikawa [6] proposed dynamic manipulability ellipsoid to take care of the dynamic parameters of
manipulators. It signifies, at a particular configuration, how arbitrary change in acceleration of the end-
effector can be obtained with joint driving forces. Though it takes care of the inertia parameters of the
manipulator, it does not consider the stiffness. Ma and Angeles [7] introduced the concept of dynamic

conditioning index or DCI [8]. A low value of DCI signifies that the inertia matrix is close to ideal isotropic
ee front matter r 2007 Published by Elsevier Ltd.
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Nomenclature

ad , au accelerations of centres of gravity of
lower and upper parts of a leg

bi ith base point in the base frame
B base frame (attached to the reference

point of the base platform)
Cu, Cp, Cs coefficients of friction in the uni-

versal, prismatic and spherical joints,
respectively

D, U frames, attached to lower and upper part
of the legs, respectively

Fi magnitude of input force at ith leg
F force generated by actuators at the

prismatic joint of legs or due to stiffness
of legs

Fext resultant of external forces acting on the
moving platform

g acceleration due to gravity
G global inertial reference frame
H input–output force transformation ma-

trix
Ip moment of inertia of the top platform

including payload in platform frame
ðId0
Þi, ðIu0

Þi moments of inertia of lower and
upper part of ith leg in local frames

J combined inertia of leg and moving
platform

ki stationary axis of the universal joint at
ith leg

ðmdÞi, ðmuÞi masses of the lower and upper part
of ith leg

M mass of the top platform including pay-
load

Mext resultant of external moments acting on
the moving platform

pi ith platform point in the platform frame
P platform frame (attached to the reference

point of the top platform)

qbi
Rbbi

qpi
Rppi

ðrd0
Þi, ðru0

Þi centre of gravity of the lower and
upper part of ith leg in local frames

R0p centre of gravity of the top platform in
platform frame

R rotation matrix specifying the orientation
of the moving platform

Rb rotation matrix (orientation of the frame
B with respect to frame G)

Rp rotation matrix (orientation of the frame
P with respect to frame G)

Si vector along ith leg
tb position of the frame B with respect to

frame G

tp position of the frame P with respect to
frame G

_tb linear velocity of the base platform with
respect to frame G

_tp linear velocity of the top platform with
respect to frame G

€tb linear acceleration of the base platform
with respect to frame G

€tp linear acceleration of the top platform
with respect to frame G

Ti rotation matrix (orientation) of ith leg
with respect to frame G

u centripetal acceleration of connection
point of the moving platform and leg

ab angular acceleration of the base platform
with respect to frame G

ap angular acceleration of the top platform
with respect to frame G

Z force due to gravity, Coriolis acceleration
and viscous friction at joints

ob angular velocity of the base platform
with respect to frame G

op angular velocity of the top platform with
respect to frame G
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generalized inertia matrix. For an ideal isotropic generalized inertia matrix, inertia torques are completely
decoupled, wherein they are easy to control.

In the first part of this article, a dynamic stability index has been proposed that exhibits a striking analogy
with the static indices and accounts for the effects of both kinematic and dynamic parameters of a
manipulator. The concept and procedure are illustrated with the help of 6-UPS Stewart platform.

In literature, closed form dynamic equations of Stewart platform assuming rigid legs and stationary base
were derived following three approaches, viz. Newton–Euler method [9,10], Lagrange method [11,12] and
virtual work principle [13]. Shuguang and Schimmels [14] studied the behaviour of simple springs connected in
parallel to a rigid body. Selig and Ding [15] developed a mathematical model of Stewart platform for the study
of vibration, with simplified assumptions, namely massless legs, frictionless passive joints, etc. Lee and Geng
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[16] derived the dynamic model of Stewart platform by considering flexibility of its legs and assumed the base
to be static.

In the second part of the present work, generalized closed form dynamic equations of Stewart platform,
following Newton–Euler approach, have been developed, considering the base movement and also accounting
for the stiffness of the legs.
2. Linearization of dynamic model of Stewart platform for free vibration

The schematic diagram of a 6-UPS Stewart platform is shown in Fig. 1.
We have assumed that
(1)
 the base and top platforms are rigid, and

(2)
 legs have lumped constant stiffness (due to hydraulic actuators, material compliance, etc.) in axial

direction. But they have no rotational stiffness.
The closed form dynamic equation of a 6-UPS Stewart platform with fixed base in joint space [9] is

H�1JH�T €LþH�1ðZ� JH�TuÞ ¼ FþH�1
RFext

RMext

" #
. (1)

In the present work, we are interested only in the platform response to initial disturbances, so we can take
external loads to be zero, without losing any generality of the procedure. Therefore, we use Fext ¼Mext ¼ 0.
For free vibration, magnitude of the force in ith leg is

Fi ¼ ðK legÞiðLi � L0iÞ ¼ ðK legÞidLi, (2)

where L0i is the equilibrium length of ith leg and Li the current length of ith leg.
For a study of the free vibration of the manipulator, Z and u are ignored in comparison with other terms of

Eq. (1). So combining Eqs. (1) and (2) we get

H�1JH�T €L ¼ �KdL, (3)

where K ¼ diag ððK legÞiÞ.
Fig. 1. The 6-UPS Stewart platform.
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Here J and H both depend on the constant properties of the platforms and legs (e.g., position of platform
and base joints, mass and centre of mass of moving platform and legs, etc.) as well as position and orientation
(t and H) of the moving platform. So, natural frequencies and mode shapes of the Stewart platform also
depend on position and orientation. For a particular position and orientation of a given Stewart platform,
both J and H are constant. Hence H�1JH�T is constant for that position and orientation. We denote
H�1JH�T as J0. Then Eq. (3) becomes

J0 €L ¼ �KdL,

or J0d €L ¼ �KdL as L0 is constant. (4)

Assuming Leiot to be a solution of the Eq. (4), we get the generalized eigenvalue problem [17] as

o2J0L ¼ KL. (5)

Solving Eq. (5), we get six natural frequencies and six mode shapes [18–20] for a particular position and
orientation of the Stewart platform.

The natural frequencies, determined from linearized dynamic model of a manipulator, incorporate the
contributions of all kinematic and dynamic parameters of the manipulator. When the value of the lowest
natural frequency is zero, the manipulator becomes neutrally stable and, hence, it cannot restore its position
and orientation if it is perturbed by any amount. A very low value also signifies dynamic instability of the
manipulator. Thus, the lowest natural frequency, calculated from Eq. (5), is an index for dynamic stability. In
other words, the lowest natural frequency plays the same role in dynamic stability as does the least singular
value of the force transformation matrix in statics. Being based on linearized dynamics, the stability index is
essentially local, just like any criterion based on the static force transformation matrix. As such, its application
in stability analysis is only in the parlance of small amplitude disturbance.

3. Simulation

The generalized eigenvalue problem (Eq. (5)) has been solved in MATLAB, taking two sets of
numerical values for two different designs of the Stewart platform. Between them, one is completely
general [9] and the other one is designed for minimum condition number of H [21], i.e. for best static
performance. The variation of the lowest natural frequency with condition number of H for different mass
of the moving platform ðMÞ is shown in Figs. 2–5. Suitable stiffnesses of the legs for both the cases and
dynamic parameters for the second case have been assumed. The values of the parameters are given in
Appendix A.

For different poses of the Stewart platform, even though the condition number of H may be same, the
lowest natural frequency may be different. Numerous instances of it appear in the simulation results that
follow:
(1) Example 1:

(a) Case 1: M ¼ 40 kg:
 (b) Case 2: M ¼ 4000 kg.
(2) Example 2:

(a) Case 1: M ¼ 4 kg.
 (b) Case 2: M ¼ 400 kg.
In Figs. 2–5, large numbers of poses (configurations) are represented with their condition numbers
and lowest frequencies on the two axes. We can see that the lowest natural frequency of Stewart
platform decreases sharply with increase of condition number of H. As H tends towards ill-conditioning,
the platform cannot support load coming from certain directions. Therefore, it gains one or more
degrees of freedom. Very low value of the lowest natural frequency also signifies the instability of the moving
platform.

But, at the same condition number of H, at different poses (different position and orientation), we see a lot
of variation of the lowest natural frequency. Still, the significant pattern emerging in the plots between the two
indices, one static and the other dynamic, shows a qualitative correlation. As such, for a pose with excellent
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Fig. 2. Ex 1, Case 1: minimum natural frequency vs. condition number of H.

Fig. 3. Ex 1, Case 2: minimum natural frequency vs. condition number of H.
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(low) condition number of the static transformation, typically we would expect a reasonably good (high) value
of the dynamic stability index. Beyond that, the condition number of H alone cannot point out which position
and orientation is more stable.
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Fig. 4. Ex 2, Case 1: minimum natural frequency vs. condition number of H.

Fig. 5. Ex 2, Case 2: minimum natural frequency vs. condition number of H.
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With the same kinematic parameters, but with different mass of the moving platform, variation of the
lowest natural frequency is significant. With the change of mass of the top platform, significant change of
the lowest natural frequency of the test manipulator I is clear from Figs. 2 and 3. Similarly, the variation of the
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lowest natural frequency of the test manipulator II, can be seen in Figs. 4 and 5. In both the cases, the lowest
natural frequency decreases with increasing mass of the platform, which signifies increasing dynamic
instability of the moving platform. This effect also cannot be explained with the condition number of H, since
H does not depend on dynamic parameters.

4. Closed form dynamic equation of Stewart platform with base motions and flexible legs

Dynamics of the Stewart platform is quite complicated due to its closed chain construction and six degrees
of freedom. From the literature, we find that a good amount of research has been pursued to find out closed
form dynamic equations of Stewart platform, following both the Newton–Euler and the Lagrangian
approaches. But the effects of base motion and flexibility of the legs have not been thoroughly explored. Use
of a completely general dynamic model will give better performance of the controller. Here, a generalized
dynamic model of a 6-UPS Stewart platform following the Newton–Euler approach has been developed in the
same way as by Dasgupta and Mruthyunjaya [9,10]. Base motion and flexibility of the legs are also considered
in the present model. Leg stiffness in the axial direction is assumed to be lumped.

To develop closed form dynamic equations, first kinematics and dynamics of the legs have been studied.
Then the force, applied on the top platform by each leg, and the external loads have been combined to
formulate the dynamic equations of the top platform in task space. While deriving the equations of motion for
a leg, the suffix i, denoting a general leg, is omitted to reduce the cluttering of the equations with too many
indices. From the context, it is quite clear that this equation is for a general leg. While developing the
assembled dynamic equations through the considerations of the equations of motion of the platform, the
suffix i has been incorporated.

The schematic diagram of a leg and the different reference frames used for developing the dynamic equation
are shown in Fig. 6.

4.1. Kinematic and dynamic analysis of a leg

Vector along a leg:

S ¼ ðqp þ tpÞ � ðqb þ tbÞ. (6)
Fig. 6. Positions of reference frames.
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Following the approach of Dasgupta and Mruthyunjaya [9,10] we get the relative velocity between the base
point and platform point:

_S ¼ ðop � qp þ
_tpÞ � ðob � qb þ

_tbÞ. (7)

Similarly, the relative acceleration between the base point and platform point is found as

€S ¼ ½€tp þ ap � qp þ op � ðop � qpÞ� � ½
€tb þ ab � qb þ ob � ðob � qbÞ�. (8)

Let us group the velocity-dependent terms and the acceleration-dependent terms as

U1 ¼ op � ðop � qpÞ � ob � ðob � qbÞ, (9)

ap ¼ €tp þ ap � qp and (10)

ab ¼ €tb þ ab � qb. (11)

Hence, €S becomes

€S ¼ ap � ab þU1. (12)

€S can be expressed in terms of leg quantities like relative sliding acceleration, angular velocity and angular
acceleration as

€S ¼ €LsþW� ðW� SÞ þ 2W� _Lsþ A� S. (13)

Equating s� €S from both Eqs. (12) and (13) along with the relations W � s ¼ 0 and A � s ¼ 0 (Presence of a
universal joint, at one end of the leg, inhibits its rotation about its own axis along the length.), we get

A ¼
1

L
s� ðap � abÞ þU2, (14)

where

U2 ¼
1

L
ðs�U1 � 2 _LWÞ. (15)

Accelerations of centres of gravity of lower and upper parts of the leg are

ad ¼
1

L
ðs� apÞ � rd þ ab �

1

L
ðs� abÞ � rd

� �
þU3 and ð16Þ

au ¼ ðs � apÞsþ
1

L
ðs� apÞ � ru þ ab �

1

L
ðs� abÞ � ru � ðs � abÞs

� �
þU4, ð17Þ

where

U3 ¼ U2 � rd þW� ðW� rdÞ þ ob � ðob � qbÞ, (18)

U4 ¼ usþU2 � ru þW� ðW� ruÞ þ 2 _LW� sþ ob � ðob � qbÞ. (19)

If Fs is the force acting on the leg at the spherical joint, from moment equilibrium of the entire leg,
we get

Fs ¼ mu s � ap þ
1

L
fðs � ruÞs � ap � ru � apg �

1

L
fðs � ruÞs � ab � ru � abg

� �
s

�
1

L
s� mdrd �

1

L
ðs� apÞ � rd þ ab �

1

L
ðs� abÞ � rd

� �� ��

þmuru � ðs � apÞsþ
1

L
ðs� apÞ � ru þ ab �

1

L
ðs� abÞ � ru � ðs � abÞs

� �� �

þ
1

L
ðId þ IuÞs� ðap � abÞ

�
þ V� sF , ð20Þ
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where

V ¼ ðmus �U4 þ Cp
_L�mus � gÞs�

1

L
s�U5 (21)

and

U5 ¼ mdrd �U3 þmuru �U4 þ ðId þ IuÞU2

þW� ðId þ IuÞW� ðmdrd þmuruÞ � gþ CuWþ f. ð22Þ

Eq. (20) can be written in a compact form as

Fs ¼ Qpap �Qbab þ V� sF , (23)

where

Qp ¼ mu 1þ
2s � ru

L

� �
�

mdr2d þmur2u
L2

� �
ssT þ

mdr2d þmur2u
L

E3 �
mu

L
ðsrTu þ rus

TÞ

�
1

L2
½mdðs� rd Þðs� rd Þ

T
þmuðs� ruÞðs� ruÞ

T
þ ~sðId þ IuÞ~s�, ð24Þ

Qb ¼ mu

s � ru

L
�

mdr2d þmur2u
L2

� �
ssT þ

mdr2d þmur2u
L

E3 �
mu

L
ðsrTu þ sTruE3Þ

þ
md

L
ðrds

T � sTrdE3Þ �
1

L2
½mdðs� rdÞðs� rdÞ

T

þmuðs� ruÞðs� ruÞ
T
þ ~sðId þ IuÞ~s�. ð25Þ

E3 is the 3� 3 identity matrix and

~s ¼

0 �sz sy

sz 0 �sx

�sy sx 0

2
64

3
75.

Now, substituting expressions for ap and ab from Eqs. (10) and (11), respectively, into Eq. (23) and
simplifying, we get the expression of force acting at spherical joint of the ith leg as

ðFsÞi ¼ ðQpi
€tp �Qbi

€tbÞ � ðQpi ~qpiap �Qbi ~qbiabÞ þ Vi � siF i. (26)

4.2. Kinematics of top platform

The position vector of the centre of gravity of top platform in global reference frame is

Rp ¼ RpR0p. (27)

The acceleration of top platform in global reference frame is

a ¼ €tp þ op � ðop � RpÞ þ ap � Rp. (28)

The moment of inertia of top platform including payload in global reference frame is

I ¼ RpIpR
T
p . (29)

4.3. Dynamics of platform in task space

From force balance of the top platform, we get

�MaþMgþRpFext �
X6
i¼1

ðFsÞi ¼ 0. (30)
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Substituting expressions of a and ðFsÞi from Eqs. (28) and (26) into Eq. (30) and simplifying,

ME3 þ
X6
i¼1

Qpi

 !
€tp � M ~Rp þ

X6
i¼1

Qpi
~qpi

 !
ap

þ
X6
i¼1

Qbi
~qbi
ab þMfop � ðop � RpÞ � gg

�
X6
i¼1

Qbi
€tb þ

X6
i¼1

Vi ¼
X6
i¼1

siF i þRpFext. ð31Þ

Using Euler’s equation for platform about the platform reference point, we have

�MRp � ½€tp þ ap � Rp þ op � ðop � RpÞ� þMRp � g� Iap

� op � Iop þRpMext þ
X6
i¼1

f i þ
X6
i¼1

qpi
� ðQbi

€tp �Qbi
~qbi
apÞ

�
X6
i¼1

qpi
� fQpi

€tp �Qpi
~qpi
ap þ Vi � siF ig ¼ 0. ð32Þ

Again, substituting expressions of a and ðFsÞi from Eqs. (28) and (26) into Eq. (32) and simplifying, we get

M ~Rp þ
X6
i¼1

~qpi
Qpi

 !
€tp �

X6
i¼1

~qpi
Qbi

€tp þ op � Iop þ IþMðR2
pE3 � RpR

T
p Þ

"

�
X6
i¼1

~qpi
Qpi

~qpi

#
ap þ

X6
i¼1

ðqpi
� Vi � f iÞ þ

X6
i¼1

~qpi
Qbi

~qbi
ap

þMRp � ½ðop � RpÞop � g� ¼
X6
i¼1

ðqpi
� siÞFi þRpMext. ð33Þ

Combining Eqs. (31) and (33), we get the closed form dynamic equations of the manipulator as

Jp

€tp

ap

" #
� Jb

€tb

ab

" #
þ Z ¼ HFþ

RpFext

RpMext

" #
, (34)

where

Jp ¼ Jplat þ
X6
i¼1

Jpi
,

Jplat ¼
ME3 �M ~Rp

M ~Rp IþMðR2
pE3 � RpR

T
p Þ

" #
,

Jpi
¼

Qpi
�Qpi

~qpi

Qpi
~qpi
� ~qpi

Qpi
~qpi

" #
,

Jb ¼
X6
i¼1

Jbi
,

Jbi
¼

Qbi
�Qbi

~qbi

~qpi
Qbi

� ~qpi
Qbi

~qbi

" #
,
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Z ¼ Zplat þ
X6
i¼1

Zi,

Zplat ¼
Mfop � ðop � RpÞ � gg

op � Iop þMRp � fðop � RpÞop � gg

" #
,

Zi ¼
Vi

qpi
� Vi � f i

" #
,

H ¼
s1 s2 s3 s4 s5 s6

qp1 � s1 qp2 � s2 qp3 � s3 qp4 � s4 qp5 � s5 qp6 � s6

" #
and

F ¼ ½F1 F 2 F3 F 4 F5 F6�
T.

The forces, coming from the base platform and exerted by the actuators, will be transmitted to the top
platform through the legs only. As the legs are flexible, there is a small relative acceleration between any two
points in the legs. Hence an inertia force also appears due to it. But for a Stewart platform, constructed for
practical application (for vibration isolation, tracking, sensor application, etc.), the stiffness of the legs are
enough to make this inertia force negligibly small. Therefore, the net force transmitted to the top platform
through a leg is equal to the force generated due to the deformation of the legs. We can get the magnitude of
this force from Eq. (2).

5. Validation of the linearized model

In this section, with the help of numerical simulations of the dynamic equations developed in Section 4, we
justify the linearization of the dynamic model in Section 2.

The dynamic equations of Stewart platform are found to be a system of stiff, coupled, nonlinear, second

order, ordinary differential equations [22,23]. No analytical method is available to solve these equations. Taking
position, orientation, linear and angular velocities as state variables, we express Eq. (34) in state-space as

_z ¼

zð7 : 12Þ

J�1p HFþ
RpFext

RpMext

" #
� Zþ Jb

€tb

ab

" # !2
664

3
775. (35)

Here z is the state vector, and is given by

z ¼ ½tpx
tpy

tpz
ypx

ypy
ypz

_tpx
_tpy

_tpz
opx

opy
opz
�T. (36)

Numerical solution of Eq. (35) has been performed with the help of MATLAB tools for the test manipulator
II, given in Appendix A, for the top platform’s reference position, (0; 0; 0:085) and orientation, (0; 0; 0),
subjected to base excitations in the z direction with an amplitude of 10�6 m and at different frequencies. We
get two distinct natures of responses of the top platform, depending on whether the excitation frequencies are
equal (or close) to the natural frequencies or away from them. Two typical plots, one at the second natural
frequency (Fig. 7) and the other away from the natural frequencies (Fig. 8), have been shown.

For different base excitation frequencies, we get the results shown in Fig. 7 and Fig. 8, depending upon
whether the frequency matches with the natural frequencies or not. For different base excitations if we plot the
ratio of the response amplitude to the base excitation amplitude against the base excitation frequency, we get a
plot like Fig. 9. The notion of this ratio makes sense, so long as the input (base) amplitude is small, in which
case the response depends linearly on the input. From the dynamic model, it is clear that the Stewart platform
has six natural frequencies. (With flexible legs the platform actually has infinite number of natural frequencies.
However, neglecting inertia distribution of the legs in the approximation, it comes down to six.) Computations
have been carried out for base excitation frequency up to a little above the second natural frequency.
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The plots (Figs. 7–9) indicate that the Stewart platform resonates if the excitation is equal to the
natural frequency, calculated from the linearized model. Since the foregoing simulation is based on the
complete model of the manipulator, this justifies the consideration of the frequencies as representative of its
dynamics.
6. Conclusions

In this paper, a generalized dynamic formulation of the 6-UPS Stewart platform has been developed using
Newton–Euler approach. Effects of leg stiffness, base motion, mass and inertia of base and legs, gravitation,
viscous damping all are taken into account while developing the dynamic model. This model can be used for
design and control purposes. For designing a Stewart platform some forces and moments, the detailed
expressions of which have not been given so far, are also necessary to be calculated to find the strength and
deflection of the structure. Those can be easily found out from the forces and accelerations, already
determined.

A dynamic stability index of manipulator has been developed and illustrated with the 6-UPS Stewart
platform. The linearization has been validated with numerical simulations. The simulations show resonance of
the complete model at the natural frequencies, which are determined through linearization. Hence these
frequencies can be considered as a representative of the system dynamics. If the lowest natural frequency is
very small, then the manipulator tends to be unstable and fails to support loads or to track a trajectory.
Therefore, we can draw the following conclusions:
(1)
 Where dynamic stability is important, design criterion can be maximization of the lowest natural frequency.
When we are interested in different positions and orientations, instead of a particular one, i.e. if the
manipulator is going to be used in a path planning and tracking application, the design criterion can be
that the lowest natural frequency is higher than a lower bound over the entire path or it should be
maximized over the path in a cumulative sense with some appropriate weights. Here, more stringent first
criterion needs more computational resources and also requires robust optimization procedures to solve
them. To some extent, relaxation of the requirements can be made by following the second criterion. But in
this case, appropriate weights should be decided based on the criticality of the operation. Over the entire
path, if there are some poses where the manipulator needs to be made more stable from the application
point of view, then the weight values should be high for these poses.
(2)
 The natural frequencies are also important for choosing the control gains. Gains should be chosen in such a

way that the closed loop poles of the corresponding linearized system do not fall near the natural frequencies.
If they fall near the natural frequencies, the controlled system may vibrate more than the uncontrolled one.
(3)
 From the natural frequencies, we get a rough estimate of the sampling time (Dt) for controller. For proper
control, sampling time should be at most Dt ¼ 2p=20onmax [24]. Where, onmax is the highest natural
frequency.
As a natural continuation of this work, the dynamic equations developed here can be used to develop
vibration controller. The gains of the controller should be such that they fall far from the natural frequencies
of the linearized model. Otherwise, instead of controlling, it will induce vibration in the system. Testing of the
analysis for a physical prototype may also be taken up as an experimental study, for which the formulation
and results of the present simulation work is likely to provide valuable guidelines regarding choice of
parameters for important and interesting revelations.
Appendix A. Description of the test manipulators

All data are in SI unit.
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(a) translation in X direction; (b) translation in Y direction; (c) translation in Z direction; (d) rotation about X -axis; (e) rotation about

Y -axis; (f) rotation about Z-axis.
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Fig. 8. Displacement from equilibrium position vs. time plot at base excitation frequency, o ¼ 550:136, away from natural frequencies:

(a) translation in X direction; (b) translation in Y direction; (c) translation in Z direction; (d) rotation about X -axis; (e) rotation about

Y -axis; (f) rotation about Z-axis.
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A.1. Test manipulator I

Base points:

½ b1 b2 b3 b4 b5 b6 � ¼

0:6 0:1 �0:3 �0:3 0:20 0:5

0:2 0:5 0:3 �0:4 �0:30 �0:2

0:0 0:1 0:1 0:0 �0:05 0:0

2
64

3
75.

Platform points (in platform frame):

½ p1 p2 p3 p4 p5 p6 � ¼

0:3 0:3 0:0 �0:2 �0:15 0:15

0:0 0:2 0:3 0:1 �0:20 �0:15

0:1 0:0 0:0 �0:1 �0:05 �0:05

2
64

3
75.

Unit vectors along fixed axes of universal joints:

½ k1 k2 k3 k4 k5 k6 � ¼

�0:8141 0:2308 0:9535 1:0000 0:7071 �0:9535

0:2714 0:9231 0:2860 0:0000 0:7071 0:2860

0:0000 0:3077 0:0953 0:0000 0:0000 �0:0953

2
64

3
75.

Mass of lower and upper part of each leg:

md ¼ 3:0 and mu ¼ 1:0

Centres of gravity of lower and upper parts of each leg (in local frames):

rd0
¼ ½ 0:4 0:14 �0:18 �T and ru0

¼ ½�6:0 �0:08 0:08 �T.

Moments of inertia of lower and upper parts of each leg (in local frames):

Id0
¼

0:010 0:005 0:007

0:005 0:002 0:003

0:007 0:003 0:001

2
64

3
75 and Iu0

¼

0:005 0:002 0:002

0:002 0:002 0:001

0:002 0:001 0:003

2
64

3
75.

Centre of gravity of the platform and payload (in platform frame):

R0 ¼ ½ 0:04 0:03 �0:06 �T.

Moment of inertia of platform and payload (in platform frame):

Ip ¼

0:050 0:003 0:004

0:003 0:040 0:003

0:004 0:003 0:100

2
64

3
75.

Coefficients of viscous friction:

Cu ¼ 0:0001; Cp ¼ 0:001; Cs ¼ 0:0002

Stiffness of legs:

K leg1
¼ 2� 108 K leg2

¼ 2� 108 K leg3
¼ 2� 108,

K leg4
¼ 2� 108 K leg5

¼ 2� 108 K leg6
¼ 2� 108,
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A.2. Test manipulator II

Base points:

½ b1 b2 b3 b4 b5 b6 � ¼

0:03 0:004486 �0:015 �0:02793 �0:015 0:02345

0:00 0:02966 0:02598 �0:01095 �0:02598 �0:01872

0:00 0:0 0:0 0:00 �0:0 0:0

2
64

3
75.

Platform points (in platform frame):

½ p1 p2 p3 p4 p5 p6 � ¼

0:0428 0:0326 �0:0334 �0:0432 �0:0094 0:0106

0:0139 0:0313 0:0301 0:0127 �0:0440 �0:0437

0:0 0:0 0:0 0:0 0:0 0:0

2
64

3
75.

Mass of lower and upper part of each leg:

md ¼ 0:3 and mu ¼ 0:1.

Centres of gravity of lower and upper parts of each leg (in local frames):

rd0
¼ ½ 0:04 0:014 �0:018 �T and ru0

¼ ½�0:6 �0:008 0:008 �T.

Moments of inertia of lower and upper parts of each leg (in local frames):

Id0
¼ 10�5 �

1:0 0:5 0:7

0:5 0:2 0:3

0:7 0:3 0:1

2
64

3
75 and Iu0

¼ 10�5 �

0:5 0:2 0:2

0:2 0:2 0:1

0:2 100 300

2
64

3
75.

Centre of gravity of the platform and payload (in platform frame):

R0 ¼ ½ 0 0 0 �T.

Moment of inertia of platform and payload (in platform frame):

Ip ¼

0:0001 0:0 0:0

0:0 0:0001 0:0

0:0 0:0 0:0001

2
64

3
75.

Coefficients of viscous friction:

Cu ¼ 0:0001; Cp ¼ 0:001; Cs ¼ 0:0002

Stiffness of legs:

K leg1
¼ 8� 107 K leg2

¼ 8� 107 K leg3
¼ 8� 107,

K leg4
¼ 8� 107 K leg5

¼ 8� 107 K leg6
¼ 8� 107,

All other parameters are the same as in the previous section.
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